荷载作用下金属材料在塑性变形、裂纹生成-扩展直至断裂的过程中, 部分能量以弹性应力波的形式释放出来的现象称为声发射(AE)。利用声发射对材料及其制成构件的疲劳损伤、疲劳裂纹等进行的研究国内外也有相应的报道[1-3]。随着声发射技术的发展和成熟, 利用声发射信号对材料或结构损伤的分析由单参数分析发展到多参数分析, 即将能量、持续时间、撞击数、幅度和外接参数等任意两个变量作关联分析, 从中找出声发射信号的变化规律, 区分不同的信号, 对材料或结构损伤进行分析。高宏等[4]利用声发射信号的能量与振幅、振铃计数与幅度数据, 对SPCC钢动态摩擦与塑性变形做了关联分析, 发现通过声发射信号可以区分拉伸过程中裂纹的扩展、断裂与摩擦。周华茂等[5]利用声发射信号对AZ31B镁合金腐蚀疲劳过程进行了分析, 通过振幅与频率等相关分析找出了与腐蚀相关的声发射信号与塑性变形相关的声发射信号的不同北京翻译公司。
Acoustic Emission refers to the phenomenon that, part of energy is released in form of elastic stress wave during the process of metal material appears elastic deformation, crack formation-expansion until it is broken under load. It is reported to use acoustic emission to study the fatigue damage, fatigue crack and the like of material or component in home or abroad [1-3]. With the development and maturity of acoustic emission technology, oneparameter analysis of structure damage or material by acoustic emission signal has been replaced by multiparameter analysis, i.e., to conduct correlation analysis of any two parameters of energy, duration, hit number, amplitude and external parameters, and find the law of acoustic emission signal, distinguish various signals for analysis of material or structure damage. Gao Hong et al.[4] conduct correlation analysis between dynamic friction and elastic deformation of SPCC steel using energy and amplitude, ring count and amplitude of acoustic emission signal. Results show that acoustic emission signal can distinguish weather the crack is extended, broken or clashed during stretching process. Zhou Huamao et.al.[5] analyzed the corrosion fatigue process of AZ31B magnesium alloy using acoustic emission signal. As a result of correlation analysis of amplitude and frequency, acoustic emission signal relevant with corrosion is distinguished from that relevant with elastic deformation.
本研究利用声发射仪对钛合金有裂纹平板试样在不同荷载速度下, 拉伸断裂过程进行了检测, 对声发射信号中的能量计数、撞击计数等参数进行了分析, 并结合应力-应变曲线、裂纹开口位移(COD)-时间曲线和CCD图像, 研究了钛合金在拉伸断裂过程中声发射信号参数与各向异性等力学行为的相关性, 为钛合金材料的结构设计和运用提供分析方法广州陪同口译。
This paper uses acoustic emission detector to test the tension failure process of titanium alloy plat with crack at various speed. Further, we analyze the energy count, hit number and such parameters of acoustic emission signal. Together with stress-deformation curve, COD-time cure and CCD image, we study the correlation between parameters of acoustic emission signal and anisotropy or other mechanical behavior during tension failure process of titanium alloy. To sum up, this paper provides analysis methods for structure design or usage of titanium materials.